
Okanagan

COSC 123

Computer Creativ ity

Okanagan

COSC 123

Computer Creativ ity

Slides courtesy of Dr. Abdallah Mohamed.

Colours, Active
Programs, and

Coordinate Transforms

COSC 123 – 2COSC 123 – 2

Announcements

1) Color background, shapes, text

2) Control transparency

3) Understand two basic color modes: RGB vs HSB

4) Set color range

COSC 123 – 4COSC 123 – 4

Color Representation
¥ You can use different colors for your drawings and the

background.

¥ You have two options:
¥ Grayscale: different shades of gray

n A single digit (integer) ranging from 0 (black) to 255 (white)

¥ Color : to represent a required color using a color model such as
RGB or HSB (aka HSV).

0 64 128 192 255

COSC 123 – 5COSC 123 – 5

RGB Color Model
¥ RGB is a color that is a result of mixing three primary colors,

Red, Green, and Blue.
¥ The amount of each color is represented by a value

from 0 (none) to 255 (max).

¥ Examples:

¥ Note: when you have same amounts, you get a shade of gray

RED
Component

GREEN
Component

BLUE
Component

Red 255 0 0

Green 0 255 0

Blue 0 0 255

White 255 255 255

Black 0 0 0

Yellow 255 255 0

Cyan 0 255 255

… … … …

COSC 123 – 6COSC 123 – 6

QuestionQuestion

Color Question
What is the best description of RGB color (210,0,190)?

A. a shade of purple

B. a shade of yellow

C. a shade of blue

D. a shade of green

E. a shade of gray

COSC 123 – 7COSC 123 – 7

QuestionQuestion

Color Question
What is the best description of RGB color (120,120,120)?

A. a shade of purple

B. a shade of yellow

C. a shade of blue

D. a shade of green

E. a shade of gray

COSC 123 – 8COSC 123 – 8

How to Color?
¥ You can color the following items:

¥ background using background() function.
¥ outline and fill of a shape using stroke() and fill() before

drawing the shape.

¥ Use either
n one argument for gray shades. e.g. fill(0) is black fill.
n three arguments for RGB color. e.g. fill(255,0,0) is red fill

n Note that RGB mode is used by default.

¥ Once you set a color, it applies to all shapes drawn afterwards.
¥ Default values are used if no colors are chosen.

¥ background: 204 (light gray), stroke: 0(black), fill: 255 (white).

¥ You can use noFill() or noStroke() functions to disable
filling or outlining a shape.

COSC 123 – 9COSC 123 – 9

List of color functions so far…
¥ background()

¥ Set background color

¥ stroke(), noStroke()
¥ Set stroke (line) color

¥ fill(), noFill()
¥ Set filling or text color

COSC 123 – 10COSC 123 – 10

Example

Colourful Shapes

background(128);

strokeWeight(3);

fill(255);
rect(0,0,90,40);

stroke(255, 0, 0);
fill(0);
rect(10,20,30,30);

stroke(255, 0, 255);
fill(255, 0, 0);
rect(50,20,30,30);

Q: Can you link each statement to one of the output shapes?

COSC 123 – 11COSC 123 – 11

Example

Colourful Text
background(0);
size(140,120);

textAlign(CENTER);
textSize(28);
text("UBC", 70, 30);

textSize(18);
text("Okanagan", 70, 50);

fill(255,255,0);
textSize(12);
text("Computer Science", 70, 70);

fill(0,255,0);
textSize(10);
text("1177 Research Rd, Kelowna, BC V1V 1V7", 10,85,120,40);

COSC 123 – 12COSC 123 – 12

Colour Transparency
¥ An optional argument can be used for fill() and stroke()

to control transparency.
¥ 0 completely transparent i.e. 0% opacity
¥ 255 completely opaque i.e. 100% opacity

¥ Examples:
¥ fill(255) is opaque white filling (default opacity is 100%)
¥ fill(0, 128) is semi-transparent black filling
¥ fill(255, 0, 0, 128) is semi-transparent red filling

background(128);
fill(255);
rect(0,0,70,20);
fill(0, 128);
rect(10,10,20,20);
fill(255, 0, 0, 128);
rect(40,10,20,20);

COSC 123 – 13COSC 123 – 13

QuestionQuestion

Using Colours
What will be drawn on the screen?

A. A line, rectangle, and an ellipse

B. A rectangle and an ellipse

C. Only the ellipse

D. Nothing

E. This code has an error and won’t run.

noStroke();
line(30,30,50,30);
noFill();
rect(10,10,20,20);
stroke(255,0);
ellipse(50,50,20,20);

COSC 123 – 14COSC 123 – 14

QuestionQuestion

Using Colours
These two statements are exactly the same.

fill(255,255,255);

fill(255,255);

A. True

B. False

COSC 123 – 15COSC 123 – 15

ExerciseExercise

Use Colours!
¥ Write a code to create the following sketch

Black background

Green outline,
thickness: 3

outline thickness: 3

Semi-transparent outline,
thickness: 10

Opaque filling

No filling

Semi-transparent
filling

COSC 123 – 16COSC 123 – 16

Aside: Hexadecimal Notation
¥ RGB colours can be represented using Hexadecimal notation.

¥ Syntax: #RRGGBB
n The # denotes the hex notation
n RR is a two-digit hex number representing red value from 0 to 255
n GG is a two-digit hex number representing green value from 0 to 255
n BB is a two-digit hex number representing blue value from 0 to 255

¥ Examples:
¥ fill(255,255,255) equivalent to fill(#FFFFFF)
¥ fill(128,196,64) equivalent to fill(#80C440)
¥ fill(0,0,255) equivalent to fill(#0000FF)

COSC 123 – 17COSC 123 – 17

HSB Colour Model
¥ In this mode, a colour is represented by

three components
¥ Hue

n Dominant pure color.

¥ Saturation:
n Vibrancy of the color
n Range: 0 to 100

¥ Brightness
n How bright the color is.
n Range: 0 to 100 Image adapted

from wikipedia

Brightness

A plane with all S and B
values for Hue=0 (red)

COSC 123 – 18COSC 123 – 18

QuestionQuestion

Colour Question
What is the best description of HSB colour (350,90,95)?

A. a shade of red

B. a shade of blue

C. Black

D. White

E. One of the ranges is invalid

Note: Assume the ranges (0-360,0-100,0-100)

Brightness

0

60

COSC 123 – 19COSC 123 – 19

QuestionQuestion

Colour Question
What is the best description of HSB colour (300,0, 50)?

A. a shade of red

B. a shade of blue

C. a shade of gray

D. black

E. One of the ranges is invalid

Note: Assume the ranges (0-360,0-100,0-100)

Brightness

0

60

COSC 123 – 20COSC 123 – 20

QuestionQuestion

Colour Question
What is the best description of HSB colour (300, 99, 0)?

A. a shade of red

B. a shade of blue

C. a shade of gray

D. black

E. One of the ranges is invalid

Note: Assume the ranges (0-360,0-100,0-100)

Brightness

0

60

COSC 123 – 21COSC 123 – 21

QuestionQuestion

Colour Question
What is the best description of HSB colour (200,0,150)?

A. a shade of red

B. a shade of blue

C. Black

D. White

E. One of the ranges is invalid

Note: Assume the ranges (0-360,0-100,0-100)

Brightness

0

60

COSC 123 – 22COSC 123 – 22

QuestionQuestion

Colour Question
These two HSB colours look the same on the screen:

(200,0,50) and (50,0,50)

A. True

B. False

Brightness

0

60

COSC 123 – 23COSC 123 – 23

HSB Ranges in Processing
¥ While above ranges (i.e. 360,100,100) are standard in image

processing, the Processing language uses 255,255,255 by

default.

Brightness

0

255
255

0

0

40

160
200 180220

COSC 123 – 24COSC 123 – 24

Changing the Color Mode
¥ By default, processing uses RGB mode with ranges from 0 to

255 for all color components R, G, and B.
¥ Defaults can be changed using colorMode() function.

¥ Syntax:

¥ Examples:
¥ colorMode(RGB) RGB mode, use default ranges (0 to 255)
¥ colorMode(RGB,100) RGB mode, ranges: 0 to 100 for all colors
¥ colorMode(HSB) HSB mode, default ranges 0 to 255)
¥ colorMode(HSB,360,100,100) change defaults to 360,100,100
¥ colorMode(HSB,1) HSB, ranges 0 to 1.0 for all components
¥ colorMode(HSB,1,1,1,10) same as above, opacity is 0 to 10.

colorMode(mode)
colorMode(mode, max)
colorMode(mode, max1, max2, max3)
colorMode(mode, max1, max2, max3, maxA)

COSC 123 – 25COSC 123 – 25

Changing the Colour Mode, cont’d
Be careful:
After changing the ranges with any of the statements above, those
ranges will remain in use until they are explicitly changed again.

colorMode(RGB, 100, 100, 100); //ranges are 100 for all R,G,B components

colorMode(HSB); //ranges are still 100 for all H,S,B components

COSC 123 – 26COSC 123 – 26

List of colour functions we learned today
¥ background()

¥ Set background colour

¥ stroke(), noStroke()
¥ Set stroke (line) colour and transparency

¥ fill(), noFill()
¥ Set filling or text color and transparency

¥ colorMode()
¥ Choose between RGB and HSB, and optionally set the range

COSC 123 – 27COSC 123 – 27

Examples

Note: don’t worry so much if you don’t remember for loops. We will go over it later.

// this example is from Processing Documentation
colourMode(RGB, 100);
for (int i = 0; i < 100; i++)
for (int j = 0; j < 100; j++) {
stroke(i, j, 0);
point(i, j);

}

size(140, 40);
background(0);
noFill();
colourMode(HSB, 100);
for (int i = 0; i <= 100; i+=10) {
stroke(i, 100, 100); //only change the hue in every iteration
ellipse(i+20, 20, 30, 30);

}

COSC 123 – 28COSC 123 – 28

PDE Colour Selector Tool
¥ You can use the PDE colour selector tool from the tools menu

(Tools->Color Selector…) to get the values of your chosen
color.

Current color

HSB values of current color

RGB values of current color

Hex representation for the RGB
values

Accept the GH Classroom Link on the
course website:

Canvas > Course Content > GitHub Classroom Links

Lecture Activity

COSC 123 – 30COSC 123 – 30

Lecture Activity Task

Update Your Design
Lecture Activity Task

¥ Add code to your character that you designed previously so that
it has colours now J… remember, be creative with your colors
and shapes.

¥ Here is my design, but yours should be different

Okanagan

COSC 123

Computer Creativ ity

Okanagan

COSC 123

Computer Creativ ity

Slides courtesy of Dr. Abdallah Mohamed.

Active Programs

¥ After finishing reading the materials, you should be able to:

¥ Understand the difference between static and active modes.

¥ Understand the order of execution of active sketches.

¥ Create a simple animation using setup() and draw().

¥ Set the frame rate of an animation using frameRate()

¥ Know where to place size() and background()

¥ Use the system variables: mouseX, mouseY, width, height

¥ Stop an animation using noLoop()

COSC 123 – 33COSC 123 – 33

Static vs Active Modes
¥ All programs you have been writing so far are static sketches.

¥ A static sketch is a series of statements that aim to draw a single
image; i.e.no animation or interaction.

¥ An active sketch on the other hand aims to draw a series of
images (each called a frame) that represent an animation.

¥ Active sketches may be programmed to be interactive to user’s
actions.
¥ Examples of actions: mouse movement, keyboard presses, etc.

COSC 123 – 34COSC 123 – 34

How to Create Active Sketches
¥ Two built-in functions: setup() and
draw() are always called automatically.
¥ setup() runs once at the beginning
¥ Then draw() runs repeatedly.

¥ The rate of running the draw method is
called the framerate.
¥ The default is 60 fps, but it can be changed

using the frameRate() function.

¥ You can stop repeating draw() using
noLoop() function.

void setup() {
...

}

void draw() {
...

}

start

COSC 123 – 35COSC 123 – 35

Active Program Structure

void setup() {
// Step S1
// Step S2
// ...
// Step Sn

}

void draw() {
// Step D1
// Step D2
// ...
// Step Dn

}

This part runs once and
is used for initialization

This part loops forever
and is used for animation

The two curly
brackets {} are
used to define the
beginning and end
of a block of code

Order of execution: S1, S2, .., Sn, D1, D2, .., Dn, D1, D2, .., Dn, D1, …etc

COSC 123 – 36COSC 123 – 36

Drawing a Static Sketch with setup/draw
¥ All these four programs produce the same output

¥ Justify?

size(200,200);
background(255);
rect(10,10,40,40);

void setup(){
size(200,200);
background(255);
rect(10,10,40,40);

}

void setup(){
size(200,200);

}
void draw(){
background(255);
rect(10,10,40,40);

}

void setup(){
size(200,200);
background(255);

}
void draw(){
rect(10,10,40,40);

}

without setup/draw

three different ways with setup/draw

COSC 123 – 37COSC 123 – 37

Notes About Active Sketches
¥ You can’t mix static and active modes!

¥ Once you use active mode, you can’t call any function, such as
rect(), outside setup() and draw().

¥ size() can only be executed once
¥ so it can’t be part of draw()

void setup(){
size(200,200);

}
void draw(){
background(255);
rect(10,10,40,40);

}

rect(10,10,40,40);
void setup(){
size(200,200);

}
void draw(){
background(255);

}

void setup(){
}
void draw(){
size(200,200);
background(255);
rect(10,10,40,40);

}

mix static & active wrong place for size()

COSC 123 – 38COSC 123 – 38

Mouse Location
¥ Processing has two keywords (system variables) that will

always contain the current coordinates of the mouse cursor.

¥ mouseX and mouseY contain mouse location (x,y) in current frame.

¥ Default value is 0 for both variables.

COSC 123 – 39COSC 123 – 39

Example

A Shape Following the Mouse
¥ In this example, the ball follows the mouse position.

void setup() {
size(200, 200);
stroke(255);
strokeWeight(3);

}
void draw() {
background(0,63,107);
fill(255,0,102);
rect(50,50,100,100);
fill(0,192,255,130);
ellipse(mouseX, mouseY, 80, 80);

}

COSC 123 – 40COSC 123 – 40

Where to put background()
¥ If placed in draw(), it clears the sketch at beginning of every frame

¥ i.e. it flood the sketch with some color.

¥ If placed in setup(), it sets the background of first frame only and doesn’t clear
subsequent frames.

¥ If you move background() to setup(), this would be the output from the
previous example.

COSC 123 – 41COSC 123 – 41

Window’s width and height
¥ There are to more useful system variables: width and height

that contain the size of the current display window.
¥ We set these two values using the size() function.
¥ Default value is 100 if size() is not used.

300 pixels

200 pixels

width

height

COSC 123 – 42COSC 123 – 42

Example

Two Shapes Controlled by the Mouse
In this example, we create a second ball positioned at the inverse of the
cursor position.

void setup() {
size(200, 200);
stroke(255);
strokeWeight(3);

}

void draw() {
background(0,63,107);
fill(255,0,102);
rect(50,50,100,100);
fill(0,192,255,130);
ellipse(mouseX, mouseY, 80, 80);
fill(255,192,0,130);
ellipse(width-mouseX, height-mouseY,80,80);

}

COSC 123 – 43COSC 123 – 43

QuestionQuestion

Function Automatically Called
Which of these functions is automatically called by the system
once we run the program?

A. size(200,200);

B. setup() and draw()

C. noLoop()

D. rect(0,0,width,height);

E. ellipse(0,0,width,height);

COSC 123 – 44COSC 123 – 44

QuestionQuestion

Frame Rate
The default frame rate is ____ and it can be changed using the
function ______

A. 15, frameRate()

B. 60, frameRate()

C. 15, setFrameRate()

D. 60, setFrameRate()

E. None of the above

COSC 123 – 45COSC 123 – 45

QuestionQuestion

Where to write code?
Which code is valid?

A.

B.

void setup(){
...

}
void draw(){
size(100,100);
...

}

void setup(){
size(100,100);
...

}
void draw(){
...

}

C.

D. None of the above.

size(100,100);
void setup(){
...

}
void draw(){
...
}

COSC 123 – 46COSC 123 – 46

QuestionQuestion

Where to write code?
Which code clears a the display window at the beginning of each
frame?

A.

B.

void setup(){
size(200,200);

}
void draw(){
background(255);
rect(5,5,90,90);

}

void setup(){
size(200,200);
background(255);

}
void draw(){
rect(5,5,90,90);

}

C.

D. None of the above; I

have a better answer.

background(255);
void setup(){
size(200,200);

}
void draw(){
rect(5,5,90,90);

}

Question: what is the difference
between A, B, and C?

COSC 123 – 47COSC 123 – 47

Tweaking Your Sketch At the Runtime
¥ Tweak Mode (Sketch->
Tweak) runs the code so
that you can change
some color and variable
values while the code is
running and see instant
feedback.

¥ Notes:
¥ This only applies to

active mode.
¥ You need to save your

program before you can
tweak it.

COSC 123 – 48COSC 123 – 48

ExerciseExercise

Animation based on Mouse Location
¥ Build on the code in the pre-class materials and

use the mouse coordinates (mouseX, mouseY) to
control other attributes in the animation, e.g.
size, transparency, color, background, etc.

¥ Be creative! For example, in this animation à
n I added a third circle, then had the size of each

shape change differently:
n Circle1: radius = mouseX + mouseY
n Circle2: radius = mouseX/2
n Circle3: radius = mouseY*2
n Box: size depends on mouseX and mouseY

n Controlled shapes’ location with mouse location.
n Changed the background color based on the

combined size of all circle.

¥ Your interactive animation doesn’t have to
have any purpose for now, just try to make
it look cool and have fun J

COSC 123 – 49COSC 123 – 49

Lecture Activity Task

Moving YOUR Character
¥ Referring to the character you designed previously, add code to

your program so that the character moves with your mouse
cursor.

¥ Hint: the location of all shapes of your character should depend
on mouseX and mouseY

¥ Here is the output (Your character could be different):

Demo of creating Animations

Okanagan

COSC 123

Computer Creativ ity

Okanagan

COSC 123

Computer Creativ ity

Slides courtesy of Dr. Abdallah Mohamed.

See you on Friday!

Okanagan

COSC 123

Computer Creativ ity

Okanagan

COSC 123

Computer Creativ ity

Slides courtesy of Dr. Abdallah Mohamed.

Active Programs (2)

Notes

¥ After reading, you should be able to:

¥ Use mouse location from previous frame (pmouseX, pmouseY)

¥ Generate random numbers using random()

¥ Write programs that are driven by mouse and key events
n 1) Using mouse functions:

mousePressed(), mouseReleased(), mouseClicked(),

mouseMoved(), mouseDragged()

n 2) Using key functions:
keyPressed(), keyReleased()

COSC 123 – 54COSC 123 – 54

Mouse Location… revisited!
¥ You have seen before that Processing has two system variables

that hold the current coordinates of the mouse cursor
¥ mouseX and mouseY contain mouse location (x,y) in current frame.

¥ Furthermore, processing has two more system variables that
will always hold the previous coordinates of the mouse cursor.
¥ pmouseX and pmouseY contain (x,y) from the frame previous to the

current frame (if used inside the draw() function).

¥ Default value is 0 for all four variables.

COSC 123 – 55COSC 123 – 55

pmouseX and pmouseY

mouseX mouseY

pmouseX pmouseY

0 0

0 0

1st frame

mouseX mouseY

pmouseX pmouseY

10 10

0 0

2nd frame

mouseX mouseY

pmouseX pmouseY

20 20

10 10

3rd frame

mouseX mouseY

pmouseX pmouseY

50 30

20 20

4th frame

T I M E

¥ You can use pmouseX and pmouseY whenever you want to use
the mouse location in the previous frame.

COSC 123 – 56COSC 123 – 56

Example

pmouseX and pmouseY
¥ We can use previous mouse coordinates is to draw a

continuous line.
¥ Note where we placed background.

¥ Task: change the framerate to 4 fps and check the output

void setup() {
size(200, 200);
background(255); // don’t clear previous frame

}
void draw() {
line(pmouseX, pmouseY, mouseX, mouseY);

}

COSC 123 – 57COSC 123 – 57

Mouse and Key Events
¥ While setup() & draw() are always invoked automatically,

there are functions that are invoked based on users input.

¥ Functions that are called based MOUSE events:
¥ mousePressed(): called whenever a mouse button is clicked
¥ mouseReleased(): called whenever a mouse button is released
¥ mouseClicked(): called after a mouse button is pressed then released.
¥ mouseMoved(): called whenever the mouse moves and the mouse

button is not clicked
¥ mouseDragged(): called whenever the mouse moves and the

mouse button is clicked

¥ Functions that are called based KEY events:
¥ keyPressed(): called whenever a key is pressed.
¥ keyReleased(): called whenever a key is released.

COSC 123 – 58COSC 123 – 58

Overall Structure of Active Programs

void setup() {...}

void draw() {...}

start

void mousePressed() {...}

void keyPressed() {...}

void mouseReleased(){...}

void mouseClicked(){...}

void mouseDragged() {...}

void mouseMoved(){...}

void keyReleased() {...}

setup runs once

then
draw runs many times per second

mouse functions are automatically
called when a mouse event happens

Key functions are automatically called
only when a key event happens

COSC 123 – 59COSC 123 – 59

Example

Event Driven Program
¥ In this example, a new circle is drawn wherever the mouse is clicked. The

color of the circle is random.

¥ Also, whenever a key is pressed, the sketch is cleared!
void setup() {
size(200, 200);
colorMode(HSB,360,100,100); //HSB mode is used
background(360,0,100); //white background
noStroke();

}
void draw() {// nothing here}

void mousePressed() {
fill(random(360),100,100,128); //random color
ellipse(mouseX, mouseY, 40, 40);

}
void keyPressed() {
background(360,0,100); //clear sketch

}

Question: what
happens if we add
background() to
draw()?

Okanagan

COSC 123

Computer Creativ ity

Okanagan

COSC 123

Computer Creativ ity

Slides courtesy of Dr. Abdallah Mohamed.

Active Programs (2)

COSC 123 – 61COSC 123 – 61

Summary of Notes
¥ The notes covered the following:

¥ New keywords: pmouseX, pmouseY

¥ New functions : random()

¥ New event-driven functions
n automatically invoked based on MOUSE events:

mousePressed(), mouseReleased(), mouseClicked(),

mouseMoved(), mouseDragged()

n automatically invoked based on KEY events:
keyPressed(), keyReleased()

COSC 123 – 62COSC 123 – 62

QuestionQuestion

Mouse Location
Which of the following keeps track of mouse location from
previous frame?

A. mouseX , mouseY

B. pmouseX , pmouseY

C. pFrame.x, pFrame.y

D. pFrame.mouseX, pFrame.mouseY

E. none of the above

COSC 123 – 63COSC 123 – 63

QuestionQuestion

Drawing a continuous line
Which of the following can be used to draw a continuous line?

A.

B.

C.

D. Either A or B E. All of them

void setup(){ background(255); }
void draw() {
line(mouseX, mouseY, pmouseX, pmouseY);

}

void setup(){ background(255); }
void draw() {
line(pmouseX, pmouseY , mouseX, mouseY);

}

void setup(){ }
void draw() {
background(255);
line(mouseX, mouseY, pmouseX, pmouseY);

}

COSC 123 – 64COSC 123 – 64

QuestionQuestion

Event Based Programming
Which of these functions is automatically called whenever the
user presses the mouse button and moves the mouse at the
same time.

A. mouseReleased

B. mousePressed

C. mouseDragged

D. mouseMoved

E. Both B and C

COSC 123 – 65COSC 123 – 65

QuestionQuestion

Framerate
Which framerate has most probably produced this output?

A. 60

B. 45

C. 30

D. 25

E. 5

void setup() {
size(200, 200);
background(255);
stroke(0);
framerate(????);

}
void draw() {
line(pmouseX, pmouseY, mouseX, mouseY);

}

COSC 123 – 66COSC 123 – 66

Lecture Activity Task

Mouse Speed
¥ this code is from the notes

used to draw a continuous
line.

¥ Modify the code so that the thickness of the line is controlled by
the mouse speed. Here are some hints:

void setup() {
size(200, 200);
background(255);
stroke(0);}

void draw() {
//... add code here ...
line(pmouseX, pmouseY, mouseX, mouseY);

}

¥ Mouse Speed is the distance the mouse travel per unit
of time. Therefore, speed can be computed in terms of
the distance the mouse travels in each new frame.

¥ i.e. difference between current mouse position
and previous one

¥ Use abs() function to avoid negative values.
¥ Don’t worry too much about having accurate

calculations.

COSC 123 – 67COSC 123 – 67

ExerciseExercise

Mouse Events
¥ Create a program that draws a circle which follows the mouse

(same location as the mouse)
¥ The circle should be:

¥ red with thick, yellow outline as long as the mouse is pressed.
¥ green with thin, white outline as long as the mouse is not pressed.

¥ Don’t use variables or conditional statements

Mouse key is not pressed Mouse key is pressed

COSC 123 – 68COSC 123 – 68

Aside: smooth() and noSmooth()
¥ By default, all geometry is drawn with smooth (anti-aliased) edges.

However, you can control this behaviour using smooth() function to
enable this feature, and noSmooth() function to disable smoothing.

¥ Notes:
¥ You don’t need to run smooth() as it is the default behaviour.

n You may use it if you want to change the anti-aliasing level (1,2,4,8) – the
default level 2; i.e. smooth(2)

¥ The maximum anti-aliasing level is determined by the hardware of the
machine running the software

n i.e. no guarantee that smooth(4) and smooth(8) will work on your
computer.

¥ Use both functions inside the setup() function.

noSmooth() smooth()

Okanagan

COSC 123

Computer Creativ ity

Okanagan

COSC 123

Computer Creativ ity

Slides courtesy of Dr. Abdallah Mohamed.

Coordinates
Transformation

1) How to translate, rotate, and scale the coordinates

2) Coordinates are reset before every new frame.

3) Transformation is cumulative within each frame.

4) Order is important when combining more than one
transformation.

5) Storing and restoring coordinate systems.

6) How to use transformed coordinates in static and dynamic
programs.

COSC 123 – 71COSC 123 – 71

The Default Coordinate System
¥ By default, the coordinate system has its

origin at the upper-left corner of the
window, with x and y coordinates as
shown in the figure.

¥ This default representation can be
transformed, i.e. translated, rotated,
and scaled using built-in functions:
¥ translate(), rotate(), scale()

¥ Only shapes drawn after the
transformation use the new coordinates.

¥ Coordinates are reset at the beginning
of each new frame (inside draw())

A 100x100 window

y

x(0,0)

(30,20)

(40,70)

COSC 123 – 72COSC 123 – 72

Coordinate Translation - translate()
¥ The translate() function moves the origin to a new location.

¥ translate() applies only to shapes drawn after the function call

¥ You can think of translate is if you are adding its arguments to all
shapes that come after it. i.e. (30,10) + (40,40) = (70,50)

y

translate(40,40)
(0,0)

y

x

(-40,-40)(30,20) x

(30,20)

(-10,-20)(0,0)

(70,50)

COSC 123 – 73COSC 123 – 73

Example

translate() in static mode

¥ Remember that we can think of the output as if we add the
translation value to the location of rectangle (assuming the
original is still at top-left corner). That is,
¥ The (x,y) of the green rectangle is (0+30,0+20) if the original is

still at top-left corner.

// move origin 30 px right and 20 px down
translate(30, 20);
fill(0,255,0);
rect(0, 0, 40, 40); // Draw at new origin

(0,0)

COSC 123 – 74COSC 123 – 74

draw()

Coordinate Translation - translate()
¥ translate() is cumulative within each frame.

¥ However, the coordinates are reset for each new frame.
¥ i.e. if you use transform the coordinates within draw() method, the next

frame assumes default origins and then translate again.

(0,0)

y

x

translate(40,40)
(0,0)

y

x
translate(10,-20)

(0,0)

y

x

Reset
Coordinates

COSC 123 – 75COSC 123 – 75

Example

translate() in static mode

¥ Another way of thinking of the
output is that we add the
translation value to the location
of shapes drawn after the
function call. That is,
¥ The (x,y) of the green

rectangle is (0+30,0+20)
¥ The (x,y) of the blue

rectangle is
(0+30-20,0+20+50)

// Draw rect at default origin
fill(255,0,0); // Red
rect(0, 0, 40, 40);

// move origin 30 px right and 20 px down
translate(30, 20);
fill(0,255,0); // Green
rect(0, 0, 40, 40); // Draw at new origin

// move origin again 20 px left and 50 px down
translate(-20, 50);
fill(0,0,255); // Blue
rect(0, 0, 40, 40); // Draw rect at new

COSC 123 – 76COSC 123 – 76

Example

translate() in dynamic mode
void draw() {
// every beginning of new frame, default origin at (0,0) is used
fill(0,255,0); // Green
rect(0, 0, 40, 40); // Draw rect at default origin

translate(50, 30); // move origin to (50, 30)
fill(0,0,255); // Blue
rect(0, 0, 40, 40); // Draw rect at new origin

}

COSC 123 – 78COSC 123 – 78

Example

Moving all items with the mouse

void draw() {
background(255);
// Translate to the mouse location
translate(mouseX, mouseY);
ellipse(30, 30, 6, 6);
ellipse(-30, 30, 6, 6);
ellipse(30, -30, 6, 6);
ellipse(-30, -30, 6, 6);

}

Example based on textbook

Q1: is there another way to write the code without translate()?

Q2: what is the benefit of using translate() over the other method?
(remember the exercise of moving your character with the mouse)

COSC 123 – 79COSC 123 – 79

¥ The rotate() function rotates the axes to a new angle.

¥ It has one parameters, the angle specified in radians.

¥ Similar to translate(), rotate() is cumulative and applies only to
shapes drawn after the function call.

¥ Note: rotate(PI) is the same as rotate(radians(180))

Coordinate Rotation - rotate()

(0,0)

y

x

rotate(PI/6)

(0,0)

y
x

(70,10)

(70,10)

COSC 123 – 80COSC 123 – 80

Example

rotate() Example
size(150, 150);
background(0);
noFill();
stroke(0, 255, 0); // green outline
rectMode(CENTER);

translate(75, 75); // origin at sketch center

rotate(PI/6); // rotate 30 degrees
rect(0, 0, 40, 40);

rotate(PI/6); // rotate 30 degrees more
rect(0, 0, 40, 40);

rotate(PI/6); // rotate 30 degrees more
rect(0, 0, 40, 40); Q. Link statements to

shapes in sketch.

COSC 123 – 81COSC 123 – 81

Coordinate Scaling - scale()
¥ The scale() function scales the coordinate system so that shapes

are drawn in a different scale (this also affects pixel and border size).
¥ Two functions: scale(size) and scale(xsize, ysize)

¥ Similar to other transforms, scale() is cumulative and applies only to
shapes drawn after the function call
(0,0)

y

x

scale(2.0)

(0,0)

y

x
(20,20)

(20,20)

COSC 123 – 82COSC 123 – 82

Example

scale() Example
size(150, 150);

scale(0.5); // scale is 50%
rect(10, 10, 20, 20);

scale(2); // now scale is back to 100%
rect(10, 10, 20, 20);

scale(2); // scale is 200%
rect(10, 10, 20, 20);

scale(2); // scale is 400%
rect(10, 10, 20, 20);

Q. Link statements to
shapes in sketch.

COSC 123 – 83COSC 123 – 83

Order Matters!

¥ In the first example, the
coordinates are translated
first then rotated

¥ In the second example,
the coordinates are rotated
first then translated.

// rotate and translate
rotate(PI/6);
translate(50, 50);
rect(0, 0, 30, 30);

50

50

50

50

Order is important when combining more than one transformation.

// translate then rotate
translate(50, 50);
rotate(PI/6);
rect(0, 0, 30, 30);

COSC 123 – 84COSC 123 – 84

Storing and Restoring Coordinates
¥ The coordinate system is saved as a transformation matrix.

¥ You can use pushMatrix() and popMatrix() to store and
restore the current coordinate system.

¥ Example:
size(150,150);

pushMatrix(); // save current origin

translate(50, 50); //origin at (50,50)
fill(255,0,0); //red
rect(10,10,40,40);

popMatrix(); //retrieve last stored origin

fill(0,255,0); //green
rect(10,10,40,40);

COSC 123 – 85COSC 123 – 85

Aside: stacking transformations
¥ You can use pushMatrix() and pushMatrix() multiple times

¥ This case, the origin will be using the “matrix stack”.

size(150,150);

pushMatrix(); // save default origin
translate(50, 50); //origin at (50,50)
fill(255,0,0); rect(0,0,40,40); //red

pushMatrix(); // save current transformation
translate(50,50); // origin at (100,100)
fill(0,250,0); rect(0,0,40,40); //green

popMatrix(); // restore prev origin - (50,50)
fill(0,0,250); rect(0,0,20,20); //blue

popMatrix(); // restore original origin (0,0)
fill(0); rect(0,0,10,10); //black

COSC 123 – 86COSC 123 – 86

ExerciseExercise

Coordinate Transformation
¥ Write code to produce the output below. You can only use
rect() and ellipse() functions to draw the shapes. All
shapes must be located at (x,y) = (0,0), i.e. the origin of the
shape is (0,0) – use coordinate transformation to place the
shapes.

COSC 123 – 87COSC 123 – 87

Lecture Activity Task

Moving YOUR Character using transform()
Previously, you moved your character by adding mouseX and
mouseY to every (x,y) of all shapes in your character.

Today, we will move the character using a simpler technique.

¥ 1) copy your character code from Exercise2 in the “Color” slides
¥ 2) add one statement at the beginning to move (translate) your

character.

